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Abstract —Reflection coefficient measurements obtained from six-port

reflectometers are analyzed from a statistical and geometrical point of

view. The analysis concentrates on the effect of using noisy power meters,

and a simply computed, geometrically interpretable estimator of the reflec-

tion coefficient possessing certain optimality properties is derived. A

suitable performance measure for this estimator is calculated for a number

of different six-port designs as the true reflection coefficient rauges over

the area of the Smith chart. For each design, a contour map of the measure

allows for easy comparison of the designs in different regions of tfse Smith

chart.

I. INTRODUCTION

sINCE THE FIRST proposals of Engen and Hoer [1]

and Hoer [2] to measure impedance (besides power,

voltage, and current) using six-port junctions equipped

with a number of power meters, a number of proposals

have been made on how to construct six-port junctions for

optimum performance. The reported optimization con-

fined their aims to either minimizing the frequency sensi-

tivity [3] or permitting the interpretations of swept visual

displays [4]. In this paper, the optimality criterion used is

statistically based, and is derived via a model of measure-

ment noise. Although there exist papers which use statisti-

cal ideas to construct estimators of the reflection coeffi-

cient [5], [6], this paper is the first (as far as we know) to

use such, ideas to compare six-port junction designs. A

by-product of the statistical analysis is the construction of

a simply computed, geometrically interpretable estimator

of the reflection coefficient possessing certain optimality

properties not shared by other estimators.

What prompted this investigation was the fact that in

the CSIRO National Measurement Laboratory, a consci-

ous choice was made to build and use six-ports with power

meters located, at ports in phase quadrature (in conjunc-

tion with a power meter responding to incident power)

[7]-[9]. The reason for this choice was the accumulated

experience gained with the locating reflectometer [10],

which provided, besides the real-time time-domain display,

a real-time analog Smith chart display. This useful facility

is provided simply by differencing pairs of power meters

Manuscript received September 8, 1986; revised June 16, 1987.
M. Berman and M. J. Buckley are with the Commonwealth Scientific

and Industrial Research Orgarusation, Division of Mathematics and
Statistics, National Measurement Laboratory, Lindfield, N.S.W. 2070,
Australia.

P. L Somlo is with the Commonwealth Scientific and Industrial

Research Organisation, Division of Applied Physics, National Measure-
ment Laboratory, Lindt’ield, N.S.W. 2070, Australia.

IEEE Log Number 8716599.

phased 180° apart. Intuitively, it was felt that a circuit

which provides a good real-time analog Smith chart dis-

play should not perform poorly when full six-port theory is

applied to enhance its accuracy.

IL MATHEMATICAL BACKGROUND AND

GEOMETRICAL INTERPRETATION

The fundamental six-port equations were given by

Engen [11] and later shown to be derivable in a simple

manner by Hunter and Somlo [12] as

P, F–B, 2

~ = ‘i I’--BO ‘
i=l,2,3 (1)

where r is the unknown reflection coefficient, Pi are the

power meter readings, s, are known real constants, and Bi

are known complex constants. Three power meter readings

are normalized to the fourth; therefore only power ratios

need to be observed (thus negating the need to use

calibrated power meters). Engetn [11] has shown that equa-

tions (1) represent circles in the complex plane as P, /PO is

held constant, and therefore any measurement of r may

be interpreted as finding the common intersection point of

three circles which simultaneously satisfy three equations

for the measured power ratios. (The calibration of the

six-port is the inverse operation: finding the centers of

circles from known values of r. This problem will not be

dealt with here.) Even when a reflectometer is already

calibrated, the three circles do not intersect at a common

point, principally because of noise in the power meter

readings.

Each of the three pairs of circles will usually produce

two intersection points. Typical] y, three of the six intersec-

tion points (one from each pair of circles) will form a

cluster. Each of these three points is an estimator of r.

The first aim of our paper is to show how, for any given

six-port design, one should combine the three estimators to

produce the (approximately) optimal estimator of r.

A number of six-port junction designs have been pro-

posed in the literature. These differ from one another in

the placement of the centers of the three “ Engen circles”

on the complex reflection coefficient plane (extended Smith

chart). The second (and main) aim of the present paper is
to make an objective comparison, using statistical tech-

niques, of some of the six-port jumction design suggestions,

namely those of Engen [11], Engen and Hoer [13], Groll

and Kohl [14], Somlo and Hunter [7], and Griffin et al.
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[15]. This is not a comprehensive list of all six-port pro-

posals to date, but hopefully is sufficient to aid future

users to make a choice.

Of course, it is possible to have n-port designs with

n >6. This will produce more than three circles, and more

than three estimators of their common intersection point.

Although the theory to be presented in this paper could in

principle be extended to such designs, they will not be

considered in this paper.

III. STATISTICAL REVIEW AND A NEW MODEL

Engen [5] has suggested using the maximum likelihood

estimator of r, assuming that the P,’s are independent

Gaussian random variables, each with a (possibly) differ-

ent but known variance. This may not be robust against

departures from Gaussianity and requires a nonlinear

minimization, which would be difficult to apply in real

time. Herscher and Carroll [6] propose linear combinations

of the individual estimators of r. Specifically, the unbi-

ased linear combination of the real parts of the estimators

with smallest variance is derived; an entirely analogous

situation holds for the imaginary parts. Although this

procedure is ,computationally simple and is independent of

the distributional properties of the noise, it has some other

drawbacks. First, because the real and imaginary parts are

considered separately, their final estimator of r is not in

general invariant under rotations of the axes; nor will the

variances of the components of the estimator be as small

as they could be if the real and imaginary parts are

considered jointly. Second, in their calculations, Herscher

and Carroll assume that the power ratios are uncorrelated.

Since the power ratios have a common power meter read-

ing in the denominator (see (l)), such an assumption may

not be justified. In addition, the generality of the solution

in [6], in terms of general calibration constants and dif-

fering power meter reading variances, does not easily lend

itself to a comparison of six-port designs.

The approach adopted here overcomes to a great extent

the objections detailed above. This is partly achieved by

making simplifying assumptions which lead to a model

with few parameters. Such a model is easier to handle and

at the same time often gives a reasonable approximation to

reality.

Formulas for the centers and radii of the circles defined

by (1) are derived, for instance, in [16]. However, it will for

the most part be more convenient to use different notation
for the remainder of the paper. In particular, our analysis

will be performed in the real Cartesian plane rather than in

the complex plane. Let C,= ($,, q,) and R,, i = 1,2,3,

denote the centers and radii of the three true circles (i.e., if

there were no measurement noise present), and let 17=

(p, v) denote the common intersection point of the three

circles.

If it is assumed that a six-port has been calibrated

already and is now used for measurement, then [16] for

practical purposes the approximation can be used that the

centers of the circles are known and fixed. (The more the

reference power meter responds primarily to incident

power, the more this will be so.) If a measurement is

performed, then system noise will affect the observed

power ratios only; hence the radii of the circles will have aA
superimposed noise component. Let R i denote the estima-

tor of R,. Then we can write

~,= R,+c,, i=l,2,3 (2)

where ~, is the measurement error in ~,. In most practical

situations, the three radii are of similar size, so that one

might expect their variances to be similar. We shall there-

fore assume that the errors have zero mean and common

variance u 2. Also, as noted above, even if the power meter

readings are uncorrelated, the normalizing reading PO in

(1) will induce correlation between the power ratios and

hence in the errors. For simplicity, let Pi= 1,2,3 have a

common signal-to-noise ratio, SNI, and let PO have a

(possibly different) signal-to-noise ratio, SNO. It can be

shown using Taylor series expansions that, provided SNO

and SNI are reasonably large, the correlation of Cl and ~,

for j + i is a nonnegative number, say p, where p ~ 0.5 if

SN1/SNO =1, p + O if SN1/SNO -~, and p ~ 1 if

SN1/SNO e O. Details will not be p~esented here. We shall

henceforth assume a common nonnegative correlation p

among the errors. Note that this model depends only on

errors in the R i‘s and so is completely independent of the

real and imaginary axes; one would expect, therefore, an

estimation procedure which is invariant under rotation of

the axes.

It will be convenient to let ~i = (ji,, fi,), i =1,2,3, denote

the estimator of r obtained from circles i – 1 and i +1,

where f’, = ~,_ ~. When the two circles have two inter-

section points (which for a six-port will usually be true), it

is easily shown that

i=l,2,3 (3)

where

ai= (ll~_l-ll~+l +d?)/2d,, b,= (A~_l–a~)*

d,= {(cz+l–’$-l)2+ (q,+1-T,_1)2)i (4)

and ($,, v,, A,) ~ (&, _3, qi_3, ~i–3) for all i.

IV. THE APPROXIMATELY OPTIMAL LINEAR

ESTIMATOR OF r

As in [6], we shall consider linear combinations of the

three estimators ~i, i =1,2,3, and shall seek those linear

combinations of (jl,, fii), i =1,2,3, which are minimum

variance linear unbiased estimators (MVLUE’S) for both p

and v. Such estimators are computationally simple, inde-

pendent of the distributional properties of the noise, and
invariant under rotations of the axes. In order to find such

estimators, one needs to know the variances and covari-

ances of (II,, $,), i =1,2, 3.AUnfortun:tely, because (pi, 0,)
is a nonlinear function of R ,– 1 and R,+ 1, it is not possible
to obtain exact formulas for these. However, if u is small
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the line joining ~1_ ~ and fi, * ~. Then it is straightforward to

“*I~~~(~<&,,/’’’’”c3 ‘howt~=.Si~Oi+~.OSO~l~g i=123 t5J

Note that (at least for the hnearlzed version of our model)

/“~ \

a, and 0, are ~observed {the latter because (3,– r/2 is the
,k)

\ angle joining r,_ ~ and 17i+ ~). The importance of (5) is that
6, \ ~, can be expressed as a linear function of the unknown

\ parameters p and v, and so this is a special case of the

~.=”— —“— — —
f, d’?,

general linear model [17], whose statistical properties are
r3 well known. In particular, there is a standard formula for

the MVLUE’S of p and v. However, this will not be in

terms of the ~t’s. Additional algebra, however, leads to the

<y- MVLUE formula

I

;,

(a)

(b)

Fig. 1. (a) Approximate representation of errors in measurement of
radii when O <8, < T, i =1,2,3. Broken lines represent cwcumferences

of observed circles. (b) Approximate representation of errors in mea-

surement of radii when 81> m, O <82, 11< n. Broken lines represent
circumferences of observed circles. (a) (b)

relative to the R, ‘s, we can insert (2) into (3) and (4) and

perform a Taylor series expansion of (3) in terms of ~i- 1
and c,+ ~ to first order to obtain a reasonable approxima-

tion to these quantities. It can be shown that this is

equivalent to assuming that the circumferences of the

circles are linear in the neighborhood of their intersection

points, This linear approximation to the problem is il-

lustrated geometrically in Fig. l(a) and (b). In either of

these, weAsee that the three lines forming the triangle with

vertices 1’1, i =1,2,3, are each perpendicular to one of the

lines joining r to the circle centers Ci, i =1,2,3. Let f31

denote the angle between the directed line r, Ci and the

positive x axis, and let a, denote the y-axis intercept of

where

ti, =m, {m, +p(m,-l+m,+l)}/D, i=l,2,3 (7)

()
2

D=(l–p)~m~+p ~m, (8)
,=1 1=1

m,=l z if8i<7r

=–1, if ~i>n-, i=l,2,3 (9)

where 1, is the length of the side of the triangle opposite f’,,

and 8, is the nonnegative angle subtended at r by C,_ 1

and C,+l, with m, = ml_3, 8, = 8,_3, and C, =Ci_3 (see

Fig. l(a) and (b)). Details of the derivation of (6) will not

be given here but will be supplied on request. Note that

Regarding (9), in most practical sitfiktions it will be easy

to see whether any of the 8,’s is greater than m. When this

is not the case (as in Fig. l(a)), all the m i‘s will be positive,

and so will all the u, ‘s. Now any point ~ in the plane can

be written as the sum of any three other points in the plane

in the form (6) where the co,’s satisfy (10). If all the tii’s

are positive, then ~ lies inside the triangle formed by ~,,

i =1,2,3; this will always be the case if all the 8,’s < n.

However, this is not necessarily so if one of the tli’s is

greater than n (see Fig. l(b)). For this case, it is informa-

tive to consider the two extremes p = O and p =1. When

p = O, we see from (7) that O, a m?= l? so that it is always

positive, and hence ~ lies inside the triangle. On the other

hand, when p =1 and say, SI > r, it c~n be shown that

UI <0, while W2>0, as ~ 0, so that r lies outside the
triangle. Why should this be so? When p =1, all the 6,’s

must have the same sign. When 81> n, it is easily seen that

no point inside the triangle can satisfy this requirement

(see Fig. l(b) for the case w~ere all the ~,’s are negative).

When O < p <1 and 81> n, r lies inside the triangle if and



974 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 11, NOVEMBER 1987

only if 6-II > O; i.e., ml < – p(mz + m~) or, equivalently,

sin SI < – p (sin Sz + sin 83) because m, ~ sin 6,.

The above theory is based on a model which approxi-

mates the circumferences of the circles by straight lines in

the neighborhood of their intersection point. To investigate

the validity of this approximation, we carried out some

simulations for various angular configurations of circle

centers about T, with p = O and 0.5, the R,’s all equal, and

u/R, = 0.01 and 0.1, respectively. As our measure of the

adequacy of the linear approximation, we used the simple

rotationally invariant mean squared distance (MSD) of

(jl, ~) from (p, v). For each angular configuration and

value of u/R,, we estimated the MSD by averaging the

square of the distance from (~, 0) to (p, v) obtained in

each of 10000 simulations. This can be compared with the
following theoretical value of MSD derived using general

linear model theory:

MSD=E{( &p)2+(; -V)2} ~Var(~)+Var(2)

Full details of the simulations will not be given here.

However, the main points to emerge are that when u/R1 =

0.01, the simulated MSD’S are within about 5 percent of

the theoretical MSD’S except when p = 0.5 and one of the

8,’s equals ~; in this last case, the simulated MSD is about

15 percent larger than the theoretical approximation. When

P = O and o/R, = 0.1, similar results are obtained, ~.
though when one of the 8,’s is near O or ~, the simulated

MSD is again about 15 percent larger than the theoretical

approximation. When p = 0.5 and o/R i = 0.1, simulations

were not possible because there is a small but significant

probability that none of the three circles intersect!

The case when me of the 8,’s is at O or n deserves

special comment. When this is so, the true circles will

touch tangentially; the obserued circles may therefore not

touch at all, leaving only two intersection points for esti-

mation instead of three. However, the above theory still

leads to a sensible result. In particular, the triangles in Fig.

l(a) and (b) become two parallel lines intersecting a third

line. The estimator (6) is then just the average of the two

intersection points, and this is therefore the recommended
estimator of ~ when only two intersection points are

available.

V. PRACTICAL IMPLEMENTATION

Numerous authors have used (1) to show that r can be

expressed as

(r= ~<P,+j~G,P,

)/
~ HZPZ (13)

ieo ,=() izo

where ~, G,, and HZ, i = 0,1,2,3, are real constants. When

the six-port is calibrated, these constants can be computed

and then used at subsequent measurements to obtain r

very rapidly. However, it is not clear whether, in the

presence of noise, (13) is using the available information in

an optimal way.

In view of the statistical theory of Section IV, we have

found it preferable to use (6), at the expense of a few extra

seconds of computing time, and in addition to obtain an

estimate of u. From general linear model theory [17] and

additional algebra, an unbiased estimator of u 2 is

32 = 4A2/D (14)

where D is given by (8) and

3

A=: ~ (prfi,_l-jl_lfi, )
~=1

‘+((:11’)2-2:1”)’ ’15)

is the area of the triangle formed by the ~, ‘s. As well as

giving a measure of uncertainty, 6 can also be used to alert

the operator to the use of a calibration which is no longer

valid, to the presence of harmonics, or to other incon-

sistencies invalidating the calibration.

VI. A COMPARISON OF SOME SIX-PORT

JUNCTION DESIGNS

In Section IV, we used the MSD of (~, 0) from (p, v) as

a simple rotationally invariant measure of the adequacy of

the linear approximation to our model. Of course, it also

gives a measure of how precise (P, fi) is as an estimator of

(p, v), and provided the linear approximation is adequate,

(12) gives an approximate value of this measure for any

given u 2 and any angular configuration of circle centers

about (w, v). In fact, for the purposes of comparing the

five six-port junction designs mentioned in the Introduc-

tion, we shall compute the standardized root-mean-squared

distance, SRMSD = (MSD)~/u, which is easily obtained

from (12).

Relevant details of the five six-port junction designs

mentioned in the Introduction are given in Table I. In the

table, the locations of the circle centers are given in polar

coordinate form, i.e., (S,, $,), where $, = S, cos *Z, q, =

S,sin #,, i=l,2,3.

For the five designs and with p = O and p = 0.5, the

SRMSD was computed as the true intersection point r
ranged over the area of the Smith chart (passive imped-

ances), i.e., the unit circle. Contour plots of the SRMSD
for the five designs when p = 0.5 are shown in Figs. 2–6.

(Remember that p = 0.5 corresponds approximately to the

case where all four power meter readings have the same

signal-to-noise ratio.) In the plots, points of constant

SRMSD are connected, in SRMSD increments of 0.05.

When p = 0.5, the minimum achievable value of SRMSD

is (2/3)~ ~ 0.816 and this is achieved when al = 82 = 83 =

2T/3. Noting that lower SRMSD values indicate a better

performance, it is seen that the idealized six-port repre-

sented in Fig. 2 performs best overall. The practical com-
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TABLE I

LOCATIONS OF THREE CIRCLE CENTERS IN POLAR

COORDINATE FORM

Reference ($)$;) (~z>+;) (s3,1J/g) Fig. No.

Engen [11] (1.5,0) (1.5,120) (1.5, -120) 2

Engen and Hoer [13] (EN) (2, 135) (2, -135) j

Groll and Kohl [14] (1,180) (1, -90) (o, - )

Somlo and Hunter [7] (1.92,0) (1.92,90) (1.92, – 90) 5
Griffin et al [15] (1,0) (3, 109) (3, - 109) 6

,1.3 ,1.4
1.5

1.

1

Fig. 4. Contour plot of SRMSD as r ranges over the unit circle for the

design of Groll and Kohl [14] when p = 0.5. See Table I for details.

Fig. 2. Contour plot of SRMSD as r ranges over the unit circle for the
design of Engen [11] when p = 0.5. See Table I for details.

Fig. 5, Contour plot of SRMSD as r ranges over the unit circle for the

design of Somlo and Hunter [7] when p = 0.5. See Table I for detatls.

Fig. 6 near (1, O) should be treated with care, for these

points are circle centers for their respective designs. If T is

near some C,, R, is small and so the signal-to-noise ratio

may be very small here. The linear approximation used to

derive (12) is no longer valid in such a region. When p = O,
the qualitative conclusions are similar to those when p =
0.5.

Fig, 3. Contour plot of SRMSD as r ranges over the unit circle for the
design of Engen and Hoer [13] when p = 0.5. See Table I for details.

promises represented in Figs. 3 and 5 are only a little

poorer. The six-ports of Fig. 6 and especially Fig. 4 are

noticeably poorer, especially near the perimeter of the

Smith chart. The contours in Fig. 4 near the origin and in

VII. SUMMARY AND DISCUSSION

A statistically based method for permitting an objective

comparison of different six-port designs has been given. A

function which measures the uncertainty due to noise in

the approximately optimal estimator of r has been plotted

over the area of the Smith chart for several designs.
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Fig. 6. Contour plot of SRMSD as r ranges over the unit circle for the

design of Griffin et al. [15] when p = 0.5. See Table I for details.

The estimated value of r suggested in this paper is

given by (6). It is optimal in the sense that, when noise is

present, it is the linear combination of the three intersec-

tion points which is minimum variance unbiased for both

its coordinates.

Finally, we notice that the method of estimation given in

this paper may have application to navigation systems

based on the measurement of distances from three fixed

. transmitters (e.g., the Omega circular radio navigation

system [18]).
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