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A Comparative Statistical Study of Some
Proposed Six-Port Junction Designs

MARK BERMAN, PETER 1. SOMLO, FELLOW, IEEE, AND MICHAEFEL J. BUCKLEY

Abstract —Reflection coefficient measurements obtained from six-port
reflectometers are analyzed from a statistical and geometrical point of
view. The analysis concentrates on the effect of using noisy power meters,
and a simply computed, geometrically interpretable estimator of the reflec-
tion coefficient possessing certain optimality properties is derived. A
suitable performance measure for this estimator is calculated for a number
of different six-port designs as the true reflection coefficient ranges over
the area of the Smith chart. For each design, a contour map of the measure
allows for easy comparison of the designs in different regions of the Smith
chart.

I. INTRODUCTION

INCE THE FIRST proposals of Engen and Hoer [1]

and Hoer [2} to measure impedance (besides power,
voltage, and current) using six-port junctions equipped
with a number of power meters, a number of proposals
have been made on how to construct six-port junctions for
optimum performance. The reported optimizations con-
fined their aims to either minimizing the frequency sensi-
tivity [3] or permitting the interpretations of swept visual
displays [4]. In this paper, the optimality criterion used is
statistically based, and is derived via a model of measure-
ment noise. Although there exist papers which use statisti-
cal ideas to construct estimators of the reflection coeffi-
cient [5], [6], this paper is the first (as far as we know) to
use such ideas to compare six-port junction designs. A
by-product of the statistical analysis is the construction of
a simply computed, geometrically interpretable estimator
of the reflection coefficient possessing certain optimality
properties not shared by other estimators.

What prompted this investigation was the fact that in
the CSIRO National Measurement Laboratory, a consci-
ous choice was made to build and use six-ports with power
meters located at ports in phase quadrature (in conjunc-
tion with a power meter responding to incident power)
[71-[9]. The reason for this choice was the accumulated
experience gained with the locating reflectometer [10],
which provided, besides the real-time time-domain display,
a real-time analog Smith chart display. This useful facility
is provided simply by differencing pairs of power meters

Manuscript received September 8, 1986; revised June 16, 1987.

M. Berman and M. J. Buckley are with the Commonwealth Scientific
and Industrial Research Orgamsation, Division of Mathematics and
Statistics, National Measurement Laboratory, Lindfield, N.S.W. 2070,
Australia.

P. I. Somlo is with the Commonwealth Scientific and Industrial
Research Organisation, Division of Applied Physics, National Measure-
ment Laboratory, Lindfield, N.S.W. 2070, Australia.

IEEE Log Number 8716599.

phased 180° apart. Intuitively, it was felt that a circuit
which provides a good real-time analog Smith chart dis-
play should not perform poorly when full six-port theory is
applied to enhance its accuracy.

II. MATHEMATICAL BACKGROUND AND
GEOMETRICAL INTERPRETATION

The fundamental six-port equations were given by
Engen [11] and later shown to be derivable in a simple
manner by Hunter and Somlo [12] as

P

l_
— =,

P,

2

T-B,
. i=1,2,3

I - B,

(1)
where I' is the unknown reflection coefficient, P, are the
power meter readings, s, are known real constants, and B,
are known complex constants. Three power meter readings
are normalized to the fourth; therefore only power ratios
need to be observed (thus negating the need to use
calibrated power meters). Engen [11] has shown that equa-
tions (1) represent circles in the complex plane as P, /P, is
held constant, and therefore any measurement of I' may
be interpreted as finding the common intersection point of
three circles which simultaneously satisfy three equations
for the measured power ratios. (The calibration of the
six-port is the inverse operation: finding the centers of
circles from known values of T'. This problem will not be
dealt with here.) Even when a reflectometer is already
calibrated, the three circles do not intersect at a common
point, principally because of noise in the power meter
readings.

Each of the three pairs of circles will usually produce
two intersection points. Typically, three of the six intersec-
tion points (one from each pair of circles) will form a
cluster. Each of these three points is an estimator of I
The first aim of our paper is to show how, for any given
six-port design, one should combine the three estimators to
produce the (approximately) optimal estimator of T

A number of six-port junction designs have been pro-
posed in the literature. These differ from one another in
the placement of the centers of the three “Engen circles”
on the complex reflection coefficient plane (extended Smith
chart). The second (and main) aim of the present paper is
to make an objective comparison, using statistical tech-
niques, of some of the six-port junction design suggestions,
namely those of Engen [11], Engen and Hoer [13], Groll
and Kohl [14], Somlo and Hunter [7], and Griffin et al.
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[15]. This is not a comprehensive list of all six-port pro-
posals to date, but hopefully is sufficient to aid future
users to make a choice.

Of course, it is possible to have n-port designs with
n > 6. This will produce more than three circles, and more
than three estimators of their common intersection point.
Although the theory to be presented in this paper could in
principle be extended to such designs, they will not be
considered in this paper.

III.

Engen {5] has suggested using the maximum likelihood
estimator of I', assuming that the P,’s are independent
Gaussian random variables, each with a (possibly) differ-
ent but known variance. This may not be robust against
departures from Gaussianity and requires a nonlinear
minimization, which would be difficult to apply in real
time. Herscher and Carroll [6] propose linear combinations
of the individual estimators of I'. Specifically, the unbi-
ased linear combination of the real parts of the estimators
with smallest variance is derived; an entirely analogous
situation holds for the imaginary parts. Although this
procedure is computationally simple and is independent of
the distributional properties of the noise, it has some other
drawbacks. First, because the real and imaginary parts are
considered separately, their final estimator of I' is not in
general invariant under rotations of the axes; nor will the
variances of the components of the estimator be as small
as they could be if the real and imaginary parts are
considered jointly. Second, in their calculations, Herscher
and Carroll assume that the power ratios are uncorrelated.
Since the power ratios have a common power meter read-
ing in the denominator (see (1)), such an assumption may
not be justified. In addition, the generality of the solution
in [6], in terms of general calibration constants and dif-
fering power meter reading variances, does not easily lend
itself to a comparison of six-port designs.

The approach adopted here overcomes to a great extent
the objections detailed above. This is partly achieved by
making simplifying assumptions which lead to a model
with few parameters. Such a model is easier to handle and
at the same time often gives a reasonable approximation to
reality.

Formulas for the centers and radii of the circles defined
by (1) are derived, for instance, in [16]. However, it will for
the most part be more convenient to use different notation
for the remainder of the paper. In particular, our analysis
will be performed in the real Cartesian plane rather than in
the complex plane. Let C,=(§,9,) and R, i=1,2,3,
denote the centers and radii of the three true circles (i.e., if
there were no measurement noise present), and let I' =
(i, v) denote the common intersection point of the three
circles.

If it is assumed that a six-port has been calibrated
already and is now used for measurement, then [16] for
practical purposes the approximation can be used that the
centers of the circles are known and fixed. (The more the
reference power meter responds primarily to incident

STATISTICAL REVIEW AND A NEW MODEL
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power, the more this will be so.) If a measurement is
performed, then system noise will affect the observed
power ratios only; hence the radii of the circles will have a
superimposed noise component. Let R ; denote the estima-
tor of R,. Then we can write

R,=R,+¢, i=1,23 ()

where ¢, is the measurement error in R,. In most practical
situations, the three radii are of similar size, so that one
might expect their variances to be similar. We shall there-
fore assume that the errors have zero mean and common
variance o2, Also, as noted above, even if the power meter
readings are uncorrelated, the normalizing reading P, in
(1) will induce correlation between the power ratios and
hence in the errors. For simplicity, let P,=1,2,3 have a
common signal-to-noise ratio, SN;, and let P, have a
(possibly different) signal-to-noise ratio, SN,. It can be
shown using Taylor series expansions that, provided SN,
and SN, are reasonably large, the correlation of ¢, and ¢
for j+1i is a nonnegative number, say p, where p = 0.5 if
SN;/SNy=1, p—>0 if SN,/SN,—> 0, and p—1 if
SN; /SNy — 0. Details will not be presented here. We shall
henceforth assume a common nomnegative correlation p
among the errors. Note that this model depends only on
errors in the R;’s and so is completely independent of the
real and imaginary axes; one would expect, therefore, an
estimation procedure which is invariant under rotation of
the axes.

It will be convenient to let fi =(f,. 7,), i=1,2,3, denote
the estimator of I' obtained from circles i —1 and i+1,
where ['=1_,. When the two circles have two inter-
section points (which for a six-port will usually be true), it
is easily shown that

i) [g,_l}+g[g,ﬁ_ghl%g[mﬂ—m-l
b, Miv] di|Ms1= M| d L é1— i [
i=1,2,3 (3)
where
a;,= (ﬁ?—l - R6\12+1+ dzz)/zdn bl = (jézz—l_ a?)%
2 3
dt= {($l+1_€i—1) +("7:+1_"71—1)2}
and (£,m,, R,)=(¢,_3,m,_5, R,_,) for all i.

(4)

IV. THE APPROXIMATELY OPTIMAL LINEAR
ESTIMATOR OF T

As in [6], we shall consider linear combinations of the
three estimators I » 1=1,2,3, and shall seek those linear
combinations of ({,,#;), i=1,2,3, which are minimum
variance linear unbiased estimators (MVLUFE’s) for both g
and ». Such estimators are computationally simple, inde-
pendent of the distributional properties of the noise, and
invariant under rotations of the axes. In order to find such
estimators, one needs to know the variances and covari-
ances of ({i,,9,), i=1,2,3. Unfortunately, because ({i,, 5,)
is a nonlinear function of R, ; and R, it is not possible
to obtain exact formulas for these. However, if ¢ is small



BERMAN et al.. COMPARATIVE STUDY OF SIX-PORT JUNCTION DESIGNS

\ i “C
3 / “\ /
2 / \ f\qg
w / \
r @
/ / /g/ 3, (2N \\
/ 53 5, \
/ oy \
/
N _""_—\'\A
5 = £ ——I, T,

<

¢

@

Cl
c2
CG

(v

Fig. 1. (a) Approximate representation of errors in measurement of
radii when 0 < 8, <m, i =1,2,3. Broken lines represent carcumferences

of observed circles. (b) Approximate representation of errors in mea-
surement of radii when 8, > m, 0 <8,, 8; <. Broken lines represent
circumferences of observed circles. (a) (b)

relative to the R,’s, we can insert (2) into (3) and (4) and
perform a Taylor series expansion of (3) in terms of €, ;
and ¢,,, to first order to obtain a reasonable approxima-
tion to these quantities. It can be shown that this is
equivalent to assuming that the circumferences of the
circles are linear in the neighborhood of their intersection
points. This linear approximation to the problem is il-
lustrated geometrically in Fig. 1(a) and (b). In either of
these, we see that the three lines forming the triangle with
vertices f’,, i=1,2,3, are each perpendicular to one of the
lines joining I' to the circle centers C;, i=1,2,3. Let 6,
denote the angle between the directed line I',C; and the
positive x axis, and let «, denote the y-axis intercept of
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the line joining £ _, and T, . Then it is straightforward to
show that

€, =vsinf, + pcosb,—a,sinf,, i=1,2,3. (5)
Note that (at least for the linearized version of our model)
a, and 6, are observed (the latter because §, — 7/2 is the
angle joining I',_; and I’ ). The importance of (5) is that
€, can be expressed as a linear function of the unknown
parameters p and », and so this is a special case of the
general linear model [17], whose statistical properties are
well known. In particular, there is a standard formula for
the MVLUE’s of p and ». However, this will not be in
terms of the I'’s. Additional algebra, however, leads to the
MVLUE formula

3
f=Yaf (6)
i=1
where
wt=m1{ml+p(mt—1+mz+1)}/D" l=172’3 (7)
3 3 2
-D=0fp)2nﬁ+p(2nh) (8)
1=1 =1
m, =1, ifd, <7
=—1, if §,> 7, i=1,2,3 (9)

where [, is the length of the side of the triangle opposite T,
and 3§, is the nonnegative angle subtended at T by C,_;
and C ., with m,=m,_,, 8§, =98, ;, and C,=C;_, (see
Fig.. 1(a) and (b)). Details of the derivation of (6) will not
be given here but will be supplied on request. Note that

(10)

(11)

Regarding (9), in most practical situations it will be easy
to see whether any of the 8,’s is greater than 7. When this
is not the case (as in Fig. 1(a)), all the m,’s will be positive,
and so will all the w,’s. Now any point I’ in the plane can
be written as the sum of any three other points in the plane
in the form (6) where the w,’s satisfy (10). If all the w,’s
are positive, then [ lies inside the triangle formed by I,
i=1,2,3; this will always be the case if all the 8 ’s< 7,
However, this is not necessarily so if one of the 8,’s is
greater than « (see Fig. 1(b)). For this case, it is informa-
tive to consider the two extremes p=0 and p =1. When
p =0, we see from (7) that , & m? = I? so that it is always
positive, and hence T' lies inside the triangle. On the other
hand, when p=1 and say, 8§, > &, it can be shown that
w; <0, while w,>0, w;>0, so that [' Lies outside the
triangle. Why should this be so? When p =1, all the ¢,’s
must have the same sign. When 8, > 7, it is easily seen that
no point inside the triangle can satisfy this requirement
(see Fig. 1(b) for the case where all the ¢,’s are negative).
When 0 < p <1 and 8, > o, T lies inside the triangle if and

3
Y 8, =2m.
1=1
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only if w,>0; ie., m; <—p(m,+m,) or, equivalently,
sind, < — p(sind, +sind,) because m, & sin g,

The above theory is based on a model which approxi-
mates the circumferences of the circles by straight lines in
the neighborhood of their intersection point. To investigate
the validity of this approximation, we carried out some
simulations for various angular configurations of circle
centers about I', with p =0 and 0.5, the R,’s all equal, and
6/R,=0.01 and 0.1, respectively. As our measure of the
adequacy of the linear approximation, we used the simple
rotationally invariant mean squared distance (MSD) of
(fi,?) from (p,»). For each angular configuration and
value of o/R,, we estimated the MSD by averaging the
square of the distance from (fi, #) to (u,v) obtained in
each of 10 000 simulations. This can be compared with the
following theoretical value of MSD derived using general
linear model theory:

MSD = E{(fi— )"+ (5 = »)?} =Var()+Var(5)

égz(l—p){3(1+p)—2p ZB‘, 0058,}

=1
3
{(l—-p) Y sin?8, +p
1=1

Full details of the simulations will not be given here.
However, the main points to emerge are that when o/R, =
0.01, the simulated MSD’s are within about 5 percent of
the theoretical MSD’s except when p = 0.5 and one of the
8,’s equals 7; in this last case, the simulated MSD is about
15 percent larger than the theoretical approximation. When
p=0 and o/R,=0.1, similar results are obtained, al-
though when one of the §,’s is near 0 or 7, the simulated
MSD is again about 15 percent larger than the theoretical
approximation. When p = 0.5 and ¢/R; = 0.1, simulations
were not possible because there is a small but significant
probability that none of the three circles intersect!

The case when vne of the §,’s is at 0 or 7 deserves
special comment. When this is so, the true circles will
touch tangentially; the observed circles may therefore not
touch at all, leaving only two intersection points for esti-
mation instead of three. However, the above theory still
leads to a sensible result. In particular, the triangles in Fig,
1(a) and (b) become two parallel lines intersecting a third
line. The estimator (6) is then just the average of the two
intersection points, and this is therefore the recommended
estimator of I' when only two intersection points are
available.

23: sin g, ) 2} . (1‘2)

1=1

V. PrACTICAL IMPLEMENTATION

Numerous authors have used (1) to show that T can be
expressed as

3
2 HP,
i=0

3 3
r-[ Y R+ G,P,) (13)

i=0 1=0

where F,, G,, and H, i =0,1,2,3, are real constants. When
the six-port is calibrated, these constants can be computed

and then used at subsequent measurements to obtain I'
very rapidly. However, it is not clear whether, in the
presence of noise, (13) is using the available information in
an optimal way.

In view of the statistical theory of Section 1V, we have
found it preferable to use (6), at the expense of a few extra
seconds of computing time, and in addition to obtain an
estimate of ¢. From general linear model theory [17] and
additional algebra, an unbiased estimator of o2 is

62=4AY/D (14)

where D is given by (8) and

1
A=—
2

3
Z (ﬁtﬁzfl - ﬁl*lﬁl)
1=1

=%{( 3 13)2—2'23; z;*}E (15)

is the area of the triangle formed by the I)’s. As well as
giving a measure of uncertainty, 6 can also be used to alert
the operator to the use of a calibration which is no longer
valid, to the presence of harmonics, or to other incon-
sistencies invalidating the calibration.

VI. A COMPARISON OF SOME SiX-PORT
JuncTION DESIGNS

In Section 1V, we used the MSD of ({, #) from (g, ») as
a simple rotationally invariant measure of the adequacy of
the linear approximation to our model. Of course, it also
gives a measure of how precise (i, #) is as an estimator of
(#,7), and provided the linear approximation is adequate,
(12) gives an approximate value of this measure for any
given o2 and any angular configuration of circle centers
about (p,»). In fact, for the purposes of comparing the
five six-port junction designs mentioned in the Introduc-
tion, we shall compute the standardized root-mean-squared
distance, SRMSD = (MSD): /o, which is easily obtained
from (12).

Relevant details of the five six-port junction designs
mentioned in the Introduction are given in Table I. In the
table, the locations of the circle centers are given in polar
coordinate form, ie., (S, v,), where £ =S,cosy,, 1,=
S siny,, i=1,2,3.

For the five designs and with p=0 and p=0.5, the
SRMSD was computed as the true intersection point I’
ranged over the area of the Smith chart (passive imped-
ances), i.e., the unit circle. Contour plots of the SRMSD
for the five designs when p = 0.5 are shown in Figs. 2—6.
(Remember that p = 0.5 corresponds approximately to the
case where all four power meter readings have the same
signal-to-noise ratio.) In the plots, points of constant
SRMSD are connected, in SRMSD increments of 0.05.
When p = 0.5, the minimum achievable value of SRMSD
is (2/3):=0.816 and this is achieved when 8,=6,=08;=
27/3. Noting that lower SRMSD values indicate a better
performance, it is seen that the idealized six-port repre-
sented in Fig. 2 performs best overall. The practical com-
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TABLE 1
LocATiONS OF THREE CIRCLE CENTERS IN POLAR
COORDINATE FORM

Reference (So¥) (S99 (5.9  Fig No.
Engen {11] (15,00 (151200 (1.5,—-120) 2
Engen and Hoer [13] V2,00 (2,135 2, -135) -3
Groll and Kohl[14]  (1,180) (1,-90)  (0,~ ) 4
Somlo and Hunter[7)  (1.92,0) (1.92,90) (1.92, —90) 5 .
Griffin et al [15] 1,0 (3,109)  (3,—109) 6
09
10

Fig. 2. Contour plot of SRMSD as I' ranges over the unit circle for the
design of Engen [11] when p = 0.5. See Table I for details.

Fig. 3. Contour plot of SRMSD as ' ranges over the unit circle for the
design of Engen and Hoer [13] when p = 0.5. See Table I for details.

promises represented in Figs. 3 and 5 are only a little
poorer. The six-ports of Fig. 6 and especially Fig. 4 are
noticeably poorer, especially near the perimeter of the
Smith chart. The contours in Fig. 4 near the origin and in
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1.3

Fig. 4. Contour plot of SRMSD as T' ranges over the unit circle for the
design of Groll and Kohl [14] when p = 0.5. See Table I for details.

Fig. 5. Contour plot of SRMSD as T’ ranées over the unit circle for the
design of Somlo and Hunter [7] when p = 0.5. See Table I for details.

Fig. 6 near (1,0) should be treated with care, for these
points are circle centers for their respective designs. If T is
near some C,, R, is small and so the signal-to-noise ratio
may be very small here. The linear approximation used to
derive (12) is no longer valid in such a region. When p =0,
the qualitative conclusions are similar to those when p =
0.5.

VIIL.

A statistically based method for permitting an objective
comparison of different six-port designs has been given. A
function which measures the uncertainty due to noise in
the approximately optimal estimator of I' has been plotted
over the area of the Smith chart for several designs.

SUMMARY AND DiscussioN
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Fig. 6. Contour plot of SRMSD as I" ranges over the unit circle for the
design of Griffin et al. [L5] when p = 0.5. See Table I for details.

The estimated value of T' suggested in this paper is
given by (6). It is optimal in the sense that, when noise is
present, it is the linear combination of the three intersec-
tion points which is minimum variance unbiased for both
its coordinates.

Finally, we notice that the method of estimation given in
this paper may have application to navigation systems
based on the measurement of distances from three fixed
. transmitters (e.g., the Omega circular radlo navigation
system [18]).
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